Outer preserving linear operators
نویسندگان
چکیده
منابع مشابه
Eigenvectors of Order-preserving Linear Operators
Suppose that K is a closed, total cone in a real Banach space X, that A :X!X is a bounded linear operator which maps K into itself, and that A« denotes the Banach space adjoint of A. Assume that r, the spectral radius of A, is positive, and that there exist x ! 1 0 and m& 1 with Am(x ! ) ̄ rmx ! (or, more generally, that there exist x ! a (®K ) and m& 1 with Am(x ! )& rmx ! ). If, in addition, A...
متن کاملA characterization of orthogonality preserving operators
In this paper, we characterize the class of orthogonality preserving operators on an infinite-dimensional Hilbert space $H$ as scalar multiples of unitary operators between $H$ and some closed subspaces of $H$. We show that any circle (centered at the origin) is the spectrum of an orthogonality preserving operator. Also, we prove that every compact normal operator is a strongly orthogo...
متن کاملLinear maps preserving or strongly preserving majorization on matrices
For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...
متن کاملLinear Operators Preserving the Numerical Range ( Radius ) on Triangular
We characterize those linear operators on triangular or diagonal matrices preserving the numerical range or radius.
متن کاملLinear Operators on Matrices: Preserving Spectrum and Displacement Structure
In this paper we characterize those linear operators on general matrices that preserve singular values and displacement rank. We also characterize those linear operators on Hermitian matrices that preserve eigenvalues and displacement inertia.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2011
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2011.07.003